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ABSTRACT: Hemicelluloses represent a largely unutilized
resource for future bioderived films in packaging and other
applications. However, improvement of film properties is
needed in order to transfer this potential into reality. In this
context, sepiolite, a fibrous clay, was investigated as an additive
to enhance the properties of rye flour arabinoxylan. Composite
films cast from arabinoxylan solutions and sepiolite suspen-
sions in water were transparent or semitransparent at additive
loadings in the 2.5−10 wt % range. Scanning electron
microscopy showed that the sepiolite was well dispersed in the arabinoxylan films and sepiolite fiber aggregation was not
found. FT-IR spectroscopy provided some evidence for hydrogen bonding between sepiolite and arabinoxylan. Consistent with
these findings, mechanical testing showed increases in film stiffness and strength with sepiolite addition and the effect of
poly(ethylene glycol) methyl ether (mPEG) plasticizer addition. Incorporation of sepiolite did not significantly influence the
thermal degradation or the gas barrier properties of arabinoxylan films, which is likely a consequence of sepiolite fiber
morphology. In summary, sepiolite was shown to have potential as an additive to obtain stronger hemicellulose films although
other approaches, possibly in combination with the use of sepiolite, would be needed if enhanced film barrier properties are
required for specific applications.
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■ INTRODUCTION
Plant polysaccharides derived as byproducts from agricultural
processes have lately received much attention as substrates for
potential future packaging materials.1−4 Xylan-type hemi-
celluloses are the most abundant heteropolysaccharides in
agricultural residues and there has been increasing interest in
their use in food packaging and other applications.5 Indeed,
over the past few years, there have been a number of reports
discussing films prepared from xylans extracted from aspen or
beech, barley husks, oat spelts, wheat bran, rye grains, or corn
hulls and bran.1−3,6,7 Agricultural byproducts such as oat spelt
or barley husk arabinoxylans have been shown to provide good
oxygen and/or grease barrier films in applications where
moderately high water vapor permeability is required.1,2

Hemicelluloses are hydrophilic polysaccharides and films tend
to show poor properties in highly humid environments,and, on
the application, mechanical properties may also need improve-
ment. For these reasons, research on new and improved
hemicellulose films continues to be reported.3,8−10

A potential route to improving mechanical and barrier
properties is the addition of nanofillers to form hemicellulose-
based nanocomposites. In comparison to unmodified polymers,

the characteristic features of nanocomposites generally include
higher modulus, increased strength, decreased gas permeability
and increased thermal stability. These effects are in large part
due to the high surface area of the well-distributed nano-
particles and the resulting increased interfacial area.11−13 Clay-
biopolymer nanocomposites are of particular interest because
of the significant potential to improve material properties;
however, in the case of hemicelluloses, the number of
publications discussing the effects of clay nanofiller addition
remains quite limited.13,14 Xylan-clay films have been made
focusing on the use of layered silicate clays such as
montmorillonite (MMT). For example, Ünlü et al. 14 prepared
films using corn cob xylan and MMT. Their research using
electrokinetic, rheological and crystallinity measurements
suggested that interactions took place on the MMT surface
and that the xylans were not oriented into the MMT interlayer
spaces.
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In addition to the use of MMT, the interesting potential of
other clays having tubular or fibrous morphologies has been
recognized. In the case of sepiolite, a fibrous clay, researchers
have investigated its use as a filler in natural rubber and plastics
such as poly(vinyl chloride).15 Combinations of sepiolite with
biopolymers such as starch, chitosan, gelatin, and polylactide
have also been investigated.12,16−18 As one example, biocom-
patible biomaterials were prepared with collagen and sepiolite
and used as gel-like complexes.19 Improved mechanical
properties were found in these sepiolite/biopolymer nano-
composites, which is in general comparable with the improve-
ments obtained with other fiber-like nanofillers (e.g., cellulose
whiskers). Chivrac et al.12 studied the effects of sepiolite
addition on the mechanical properties of starch nano-
composites. In their study a comparison was made between
sepiolite and other fibrous fillers, such as cellulose whiskers or
cellulose nanofibers, as well as hectorite, a layered nanoclay.
Evidence for strong hydrogen bonding was noted at cellulose
whisker loadings above the percolation threshold. Reinforcing
effects were observed when either cellulose whiskers or
cellulose nanofibers were used and in both cases mechanical
property improvements were similar to those achieved when
using a layered or fibrous clay additive. In these composites, the
Young’s modulus increased and there was no effect on the
strain at break. When fibrous sepiolite and MMT were
compared, it was found that sepiolite increased the Young’s
modulus and tensile strength to a greater extent than MMT,
presumably due to the morphology of the clay, the increased
crystallinity of the nanocomposites and interaction between the
starch matrix and sepiolite.
Sepiolite has a hydrated magnesium silicate composition with

a t h eo r e t i c a l un i t - c e l l f o rmu l a equ i v a l en t t o
Si12O30Mg8(OH)4·(H2O)4·8H2O. Alternating longitudinal
blocks and channels (tunnels) are found in the sepiolite
structure, producing long needles with a high surface area
(approximately 374 m2/g).11 The blocks are built up of two
layers of tetrahedral silica, sandwiching an octahedral
magnesium oxide-hydroxide layer in the center (Figure 1).
The composite layers are off-set, hence allowing the formation

of tunnel-like micropores (channels), running parallel to the
fiber axis. The channels in the sepiolite structure are occupied
by water coordinated to the magnesium ions at the edges of the
octahedral layers and zeolitic water associated with the clay
structure by hydrogen bonding inside the tunnels. Silanol (Si-
OH) groups appear at the external surface edges of the sepiolite
structure.12,20−22 The numerous silanol groups provide sites for
hydrogen bonding and Van der Waals interactions in
composites, contributing to the reinforcing effect of sepiolite.
From this perspective, the availability of silanol groups for
hydrogen bonding with other moieties mostly occurs at the
edges. Sepiolite has a microfibrous morphology with fiber
lengths of 2−10 μm and diameters in the range of 2−100
nm,17,23 pointing to aspect ratios of 20−200.
We focused our work on composite films using arabinoxylan

from rye grains and sepiolite at loadings between 2.5 and 10 wt
%. The objective was to observe potential improvements in the
mechanical and barrier properties of arabinoxylan films.
Morphology, crystallinity and structural changes in the
composite films were studied as well as tensile and barrier
properties and these characteristics were compared with those
of unreinforced arabinoxylan films. To the best of our
knowledge, this is the first report on the production and
mechanical/barrier properties of sepiolite-hemicellulose com-
posite films.

■ MATERIALS AND METHODS
Materials. Arabinoxylan (Lot 20601) from rye flour (RAX) was

purchased from Megazyme International Ireland Ltd. (Bray, Ireland).
The arabinoxylan was a high-viscosity sample with reported Ara/Xyl
ratio of 0.64, purity ∼90% and ash content of 4.5 wt %. Poly(ethylene
glycol) methyl ether (mPEG) and sepiolite were purchased from
Sigma-Aldrich (Steinheim, Germany). The sepiolite powder from
Aldrich has a unit cell formula of Mg2H2Si3O9·xH2O and a reported
Mg content of approximately 13%.

Film Casting. Neat RAX and RAX-sepiolite composite films
containing the two components in ratios 97.5:2.5, 95:5, 90:10, and
80:20 were prepared, although the last of these, containing 20 wt %
sepiolite, was prepared only for tests on light transmission. RAX was
mixed into MilliQ water for 4 h at 70 °C under magnetic stirring at a

Figure 1. Transection of the sepiolite structure. Adapted from ref 24.
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concentration of 10 g/L. Sepiolite suspensions were prepared at a
concentration of 2.5 g/L in MilliQ water and were sonicated for one
hour under magnetic stirring using a UP 400 S ultrasonic processor
with a 22 mm diameter tip and a maximum amplitude of 100 μm at
25% output (Hielscher Ultrasonics GmbH, Teltow, Germany). The
sepiolite suspension and RAX solution were then mixed in appropriate
ratios using magnetic stirring. The mixtures were degassed by
ultrasonication for 15 min and suitable volumes poured into Teflon-
coated Petri dishes for the purpose of film casting. In selected cases,
mPEG plasticizer was added to the mixed RAX-sepiolite formulations
prior to ultrasonication at 30 wt % loading on the basis of total RAX-
sepiolite weight. mPEG was chosen as the plasticizer as it is nontoxic
and may be applied in foods, cosmetics or pharmaceuticals.25 mPEG
has not to our knowledge been used as a plasticizer in previous studies
on hemicellulose films. Films were prepared by drying the contents of
the Petri dishes at 23 °C and 50% relative humidity (RH) and held
under these conditions for at least four days before analysis. The
thickness of the films was measured at 10 points using a Mega-Check
Pocket Coating Thickness Meter with micrometer precision (List-
Magnetik, Leinfelden-Echterdingen, Germany) and average film
thicknesses were calculated.
Light Transmittance. The light transmittance of the films was

measured for two replicates of each film type over the 190−890 nm
wavelength range with an Ultrospec 2100 pro UV−visible
spectrophotometer (Biochrom Ltd., Cambridge, UK). The light
transmittance was normalized to a thickness of 30 μm for all tested
films. Film opacity, normalized to a film thickness of 30 μm and
expressed as absorbance × nanometers, was calculated with an
integration procedure as similarly reported by Siro ́ et al.26
Fourier Transform Infrared (FT-IR) Spectroscopy. FT-IR

spectra were collected using a Perkin-Elmer Spectrum One
spectrometer (PerkinElmer Life and Analytical Sciences, Shelton,
WA, USA). For this purpose, the film samples were tested using an
STI Thunderdome attenuated total reflectance (ATR) attachment.
Sepiolite powder samples were pressed into KBr pellets (2 mg sample/
200 mg KBr). Spectra were obtained based on 16 scans collected in
the range 400−4000 cm−1 at a resolution of 2 cm−1.
X-ray Diffraction. X-ray diffraction was used to study structural

changes in RAX-sepiolite composite films in comparison to neat RAX
film and sepiolite powder. A Siemens D5000 X-ray diffractometer
(Siemens Analytical and X-Ray Instruments Inc., Madison, WI, USA)
equipped with a Co (λ = 0.179 nm) tube and a diffracted beam
monochromator was used. Diffractograms were collected in the 2Θ
range of 3−30° using a step size of 0.05° and a counting time of 20 s.
One film sample was tested from each cast film type.
Microscopy. The fracture surface morphology of the composites

after tensile testing was studied using focused ion beam scanning
electron microscopy (FIB-SEM) on an AURIGA CrossBeamWork-
station (Carl Zeiss, Oberkochen, Germany). The samples were
sputter-coated with carbon in a vacuum chamber before examination.

The chemical composition of the composites was analyzed with
energy-dispersive X-ray spectroscopy (EDX, NORAN System Six,
Thermo Scientific, Waltham, MA) in a JEOL 7500F SEM (JEOL Ltd.,
Tokyo, Japan).

Thermogravimetric Analysis (TGA). The thermal degradation of
films and sepiolite powder was studied under N2 atmosphere at a flow
rate of 30 mL/min using a Netzsch TG 209 F3 Tarsus
thermogravimetric analyzer (NETZSCH-Geraẗebau GmbH, Selb,
Germany). The weight of the analyzed film pieces varied between 1
and 2 mg and alumina pans were used for the measurements. The
samples were heated from 36 to 900 °C at a rate of 20 °C/min,
including an isothermal ramp at 120 °C for three minutes.

Tensile Testing. Tensile testing was performed on rectangular film
samples (10 mm x 80 mm) using an Instron 5944 universal testing
machine (Instron Corp., High Wycombe, England) with Instron grips
series nr. 2712−019, according to the ASTM standard test method
D882−09.27 Film test samples were cut using a Synrad 48−5 laser
cutter (Synrad, Mukilteo, WA, USA). Sample testing was performed in
a conditioned room at 23 ± 1 °C and 50 ± 2% RH. A load cell of 50 N
was used with an extension rate of 5 mm/min and an initial grip
distance of 50 mm. A preload of 0.1 N (extension rate = 5 mm/min)
was applied to ensure measurement of straight samples. Ten
specimens were tested from each sample, which were conditioned at
23 °C and 50% RH for 120 h before testing.

Statistical analyses were performed on the tensile test results using
Tukey-Kramer HSD (Honestly Significant Difference) tests on data
from ten specimens and the statistical software JMP version 5.0.1 (SAS
Institute Inc., Cary, NC, USA) at a significance level of 0.05.

Water Vapor Permeability. The water vapor permeability was
measured for three films per sample type according to the ASTM 96/E
96 M − 05 standard.28 Films were sealed to aluminum cups,
containing 21 g dry CaCl2 as a desiccant. This setup included an air
gap of 6 mm between the desiccant and the underside of the film. The
aluminum cups were placed into a climate chamber with controlled
relative humidity and temperature (50% RH and 23 °C). The cups
were weighed 8−10 times over the period of three days. Calculations
were performed according to the method of Mikkonen et al.29 The
water vapor transmission rate (WVTR) was calculated from the linear
regression of the slope of weight gain vs time by dividing the slope by
the test cell mouth area. The water vapor permeability (WVP) was
obtained by multiplying the WVTR by the thickness of the film and
dividing it by the water vapor partial pressure difference between the
two sides of the film. The correction method of Gennadios et al.,30 in
which the air gap is taken into account, was used as a means of
calculating the water vapor partial pressure at the underside of the film.
However, data calculated using this correction method gave WVP
values which were not significantly different from those calculated
without correction.

Oxygen Permeability. The oxygen transmission rate (OTR) of
films was measured with an OPT-5000 Oxygen Permeability Tester

Figure 2. Images of neat rye arabinoxylan (RAX) and rye arabinoxylan (RAX)-sepiolite composite films, from left to right, RAX, RAX-sepiolite 95:5,
90:10, and 80:20. Films were placed on a white paper sheet with printed text.
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(PBI-Dansensor A/S, Ringsted, Denmark) containing a ceramic solid-
state oxygen sensor. Measurements were performed at 23 ± 0.03 °C
and 50 ± 2% RH. The test samples were placed in a permeability
chamber which consisted of an upper (feeding) and a bottom
(receiving) chamber. Dry nitrogen containing less than 0.1 ppm
oxygen (Alphagaz 2, Air−Liquide Danmark) was used as carrier gas
and pure oxygen (N45, Air−Liquide Danmark) served as the test gas.
Inlet pressure was set to four bars at the regulator. The oxygen
permeability was calculated by multiplying the OTR with the thickness
of the films and dividing with the pressure value of the measuring
chamber. The oxygen permeability was determined for two replicates
of each film type.

■ RESULTS AND DISCUSSION
Visual Properties and Light Transmittance. All cast

films were cohesive and the thickness of the films varied
between 25 and 45 μm. Light transmittance showed a general
decrease with increasing clay content. All cast films were at least
semitransparent; however, minor color changes were visible as
the clay loading was increased to 10 and 20 wt %, as can be
seen in Figure 2. The neat RAX films showed some slightly
opaque spots, which may have been due to minor quantities of
proteins precipitated during sample dissolution or lignin
contamination. Significant contamination by lignin was not
expected in the RAX since the material was alkali-extracted
from rye grains and only minor amounts of aromatic
components, such as ferulic acids, which would be characteristic
of lignin, were found. Robertson et al.31 measured the ferulic
acid content of the RAX material used in this study at a level of
1.55 mg/g. The light transmittance of the films as a function of
wavelength is shown in Figure 3. The neat RAX film and films

containing lower amounts of sepiolite (2.5 and 5 wt %) showed
a minor inflection in light transmission at 260 nm. This finding
could be attributable to some aromatic compounds such as
lignin or proteins absorbing in the ultraviolet region, because
the typical absorption of aromatic compounds such as ferulic
acid or aromatic amino acids occurs in the range 200−300
nm.32 The film opacities were calculated and a good correlation
was found with the visual appearance. The calculated values
were 276.2, 217.3, 328.0, 349.2, 398.5 (AU × nm) for the RAX,
RAX-sepiolite 97.5:2.5, 95:5, 90:10, and 80:20 films,
respectively. These differences suggest that 5 wt % or higher

amounts of added clay were not well dispersed and therefore
introduced some opacity.33 This effect was particularly
noticeable at 10 and 20 wt % sepiolite loadings.

Microscopy. The sepiolite distribution and the presence of
clay aggregates was studied with FIB-SEM. Figure 4a shows the

distribution of 2.5 wt % sepiolite in the RAX matrix in the
cross-section of tensile-tested films and Figure 4b illustrates the
composite film cross-section containing 5 wt % sepiolite after
tensile testing. The images show well-dispersed sepiolite fibers
with minimal pull-outs, indicating strong binding between the
sepiolite and the RAX matrix. The lower level of clay addition is
apparent from the fewer fibers visible in the image of the RAX-
sepiolite 97.5:2.5 film (Figure 4a) which contains half the
amount of sepiolite as the film RAX-sepiolite 95:5. The RAX
matrix shows a nodular appearance and a similar morphology to
that reported by Stevanic et al.34 in a study on arabinoxylan-
bacterial cellulose composite films based on the same RAX.
From the FIB-SEM images, the diameter of the sepiolite fibers
is estimated to be ∼100 nm, which is comparable with values
reported in an earlier study.17

The composition of the composite films was studied by
energy-dispersive X-ray spectroscopy (EDX) (Figure 5). As
expected, EDX analysis revealed the occurrence of silicon and
magnesium in an approximate ratio of 1.5 to 1 (atomic ratio)
due to the presence of sepiolite. Phosphorus and calcium,
present in the pure RAX and dominating in the ash, were also
detected in the films.

FT-IR Spectroscopy. FT-IR spectra of sepiolite powder,
RAX, and RAX-sepiolite films were collected in order to
examine the presence of clay in the RAX matrix as well as to
study changes in molecular structure or the formation of new
chemical bonds. The spectrum of neat RAX (Figure 6) shows a

Figure 3. UV−vis transmittance of rye arabinoxylan (RAX) and RAX-
sepiolite composite films.

Figure 4. FIB-SEM images of rye arabinoxylan (RAX)-sepiolite
composites, (a) RAX-sepiolite 97.5:2.5 and (b) RAX-sepiolite 95:5.
Scale bar = 200 nm. The arrows point to sepiolite fibers (fiber
diameter: 100−200 nm).
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strong absorption band at 1042 cm−1, which is due to C-OH
bending.35,36 A weak absorption band at 900 cm−1 is
characteristic of β-(1→4) glycosidic linkages between the
xylose units in the RAX structure. A low intensity amide I
absorption band appears at approximately 1651 cm−1, which is
consistent with a low level of protein contamination.37 The
absence of an absorption band at 1517 cm−1 indicates that very
little, if any, ferulic acid is present.
The FT-IR spectrum of sepiolite (Figure 6) shows peaks in

the 3400−3650 cm−1 region attributed to OH stretching
vibrations of zeolitic and Mg-coordinated water molecules
occurring inside the tunnels and bound to the magnesium ions
in the mineral structure. Bending vibrations of the zeolitic or
channel water molecules contributed to a signal at 1666 cm−1.
Peaks associated with Si-O bonds in the tetrahedral sheets were
seen between 1300 and 800 cm−1. Si-O-Si bonds contributed to
bands at 1215 and 1079 cm−1 and in-plane Si-O-Si vibrations
were observed at ∼1025 and 980 cm−1.16,38

The spectra of RAX-sepiolite films show some differences
when compared with the spectra of the pure components. The
shoulder in the spectrum of RAX at 995 cm−1 grew with
sepiolite addition and a peak appeared at 984 cm−1 in the
spectrum of the RAX-sepiolite 90:10 film, which can be
associated with the higher clay content of this film. A slight
increase in the intensity of the peak at 1666 cm−1 was also

noticed; however, there is overlap here with the RAX amide I
band, which hinders interpretation. A peak appearing at 3380
cm−1 in the spectrum of the RAX film shifted toward higher
wavenumbers with addition of sepiolite, as was observed for
example at 3435 cm−1 in the spectrum of the RAX-sepiolite
90:10 film. This shift of the OH stretching band is likely
indicative of hydrogen-bonding interactions between RAX and
sepiolite.

X-ray Diffraction. Arabinoxylans with a high degree of
substitution (Ara/Xyl ratio of 0.5 or greater) are amorphous
and show no distinct peaks in the X-ray diffraction pattern.
Decreasing the arabinose substitution (Ara/Xyl ratios between
0.37 and 0.2) on the xylan main chain can lead to increasing
crystallinity, showing distinct crystalline peaks between 4.9 and
3.3 Å.3,39 It is believed that the unsubstituted regions of the
chains crystallize while the more highly substituted regions of
the xylan chains remain amorphous. The arabinoxylan (RAX)
applied in this study was highly substituted (reported Ara/Xyl
ratio of 0.64) and therefore the presence of a crystalline
structure in the polymer was neither expected nor found. The
neat RAX film exhibited a broad peak with a maximum at 4.5 Å
(Figure 7A).
The characteristic (110) diffraction of sepiolite dominates

the pattern of the pure sepiolite sample (Figure 7E), and in
addition, an unidentified impurity can be detected with a d-

Figure 5. Low-magnification SEM image and corresponding EDX spectrum for the cross-section of a 95:5 rye arabinoxylan (RAX)-sepiolite
composite film.

Figure 6. FT-IR spectra of sepiolite, neat rye arabinoxylan (RAX), and composites of RAX-sepiolite.
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spacing of 22.5 Å. A minor but distinct shift of the (110)
diffraction can be observed in the composite films. This shift is
caused by the off-set of the effective diffraction plane between
the films and the shift scales with the effective density of the
films. The maximum of the broad peak in the XRD pattern of
the films is also shifted slightly toward higher angles (Figures
7A−D). This may signify a change in the polymer, but it is also
influenced by overlapping with the minor diffraction peaks of
the sepiolite.
TGA Analysis. The thermal properties of neat RAX and

RAX-sepiolite films were studied using TGA under nitrogen
atmosphere. Panels A and B in Figure 8 show the typical TGA

and DTGA curves for RAX, RAX-sepiolite films and sepiolite
powder. Sepiolite showed a weight loss of 11.1% in the
temperature range 36−900 °C (the temperature range of 36−
550 °C is shown in Figure 8). Sepiolite loses zeolitic and
structural water when it is heated and this is followed by loss of
octahedrally coordinated hydroxyl groups (internal Mg-OH) in
a four-step process with eventual collapse of the crystal
structure.20,38 Kuang et al.20 found that maxima for the rate of
weight loss occurred at 60 °C, 260 °C, 510 °C and 800−830 °C
and, except for the last two, these changes are shown in Figure
8A, representing the loss of zeolitic water, structural water in
two stages, and Mg-OH dehydroxylation, respectively. In
Figure 8A, initial weight losses of approximately 5% are
attributable to the release of water. As shown, the arabinoxylan
in the RAX and composite film samples started to decompose
at ∼260 °C. Slight differences in maximum weight loss
temperatures (Tmax) were observed in the DTGA. For example,
RAX showed a Tmax at 291 °C, whereas Tmax for the composite
films containing 2.5, 5, and 10 wt % sepiolite were found at 295,
297, and 298 °C, respectively. A shift in Tmax is commonly
observed during thermal analysis of clay-biopolymer films. In
one case, a similar temperature increase was found for starch-
sepiolite composites in which the Tmax temperature increased 3
°C at 3 wt % sepiolite addition and 8 °C at 6 wt % sepiolite
addition.12 Addition of layered nanoclays, such as MMT, has
also been shown to increase degradation temperatures and in
these cases the clay is thought to form an inorganic network,
which can act as a gas transport barrier, thereby hindering the
diffusion of pyrolysis gases.40 As a case in point, Ünlü et al.14

cast xylan films from corn cob with MMT addition and studied
the thermal behavior of such films. A Tmax of 284 °C was found
for neat xylan but this increased to 303 °C with an addition of 2
g/mL MMT to 7.8 × 10−5 g/ml xylan. It seems reasonable to
assume that the fibrous sepiolite would not so easily form a
tortuous path to hinder the path of pyrolysis gases and, as a
result, the increases in Tmax are less significant (Figure 8B).

Tensile Testing. The effect of sepiolite addition on RAX
film mechanical properties was examined by tensile testing. The
efficiency of plasticization using mPEG addition was also
studied. Neat arabinoxylan films without plasticizer addition
showed a tensile strength (stress at break) of 42.5 MPa, which
is similar to, but slightly lower than, values reported previously
for this material. For example, Höije et al.35 and Stevanic et al.30

measured tensile strengths of 52.4 and 58 MPa respectively for
rye arabinoxylan at the same RH, but at a slightly higher
temperature in the work of Stevanic et al. Addition of sepiolite
resulted in a very significant increase in film strength and
stiffness (Table 1). As an example, addition of 2.5 wt %
sepiolite to RAX gave an increase in Young’s modulus from 2.3
to 3.9 GPa and an increase in tensile strength from 42.5 to 73.6
MPa. Further addition of sepiolite showed only a minor
additional increase in the Young’s modulus values. In the case
of the tensile strength, although there was no significant
difference between the mean values determined for films with
2.5 or 10 wt % sepiolite, there was a significantly lower mean
value recorded for films with 5 wt % sepiolite. This particular
finding is contrary to expectation and a detailed explanation
must await further research. In general, it may be said that the
nonplasticized films containing sepiolite had tensile strength
values in the order of 70 MPa. No statistically significant
differences were detectable in the strain at break values of the
neat RAX and RAX-sepiolite composites without plasticizer
addition.

Figure 7. X-ray diffraction patterns of (A) neat rye arabinoxylan
(RAX), (E) sepiolite and composite films of RAX-sepiolite, RAX-
sepiolite (B) 97.5:2.5, (C) 95:5, and (D) 90:10. (110) indicates the
position of the characteristic peak from sepiolite and U an unidentified
mineral in the sepiolite sample.

Figure 8. (A) TGA and (B) DTGA results for sepiolite, arabinoxylan
(RAX), sepiolite, and composites of RAX and sepiolite in the
temperature ranges 36−550 °C and 110−550 °C, respectively.
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The addition of mPEG plasticizer had the expected effect of
decreasing film stiffness and strength while increasing the
elongation values. In the case of the RAX-sepiolite films with
added mPEG, a slight increase in the Young’s modulus and a
decrease in the tensile strength values were observed with
increasing sepiolite content. The strain at break showed values
approximately four to five times higher than those of the
nonplasticized films. A decrease in extensibility could be seen in
films with 5 and 10 wt % sepiolite content and 30 wt % mPEG
relative to unfilled RAX or RAX films with 2.5 wt % sepiolite
containing the same percentage of mPEG.
The reinforcing effects of sepiolite addition have been

investigated using other biopolymers such as chitosan and
starch. Chivrac et al.12 incorporated 3 and 6 wt % organo-
modified sepiolite into plasticized starch and found that the
Young’s modulus increased by up to a factor of 2.5 relative to
unfilled wheat starch. As reported, a slight decrease was found
in the strain at break values with sepiolite addition and with
similar clay loading as applied in our study. Similar behavior
when comparing layered silicates with sepiolite was observed in
gelatin films.17 A reinforcing effect comparable to that reported
here was observed and assigned to the presence of numerous
silanol groups on the surface of the sepiolite fibers strongly
interacting with the carbohydrate matrix. Darder et al.,16 in
their study on chitosan as the matrix, showed that sepiolite
addition doubled the Young’s modulus; however, this finding
was obtained in the case of films containing very high sepiolite
loadings. Such high sepiolite loadings (3−91 g of chitosan per
100 g of sepiolite) resulted in highly fragile films, hence strain at
break was not measured and tensile strength values were not
reported. With the addition of high sepiolite loadings, clay
aggregation was observed in the cast films through the use of
low-temperature SEM. Soler added MMT clay to arabinoxylan
from barley husks and studied the reinforcing effects of MMT;
however, significant effects in terms of tensile strength and
Young’s modulus were not seen.41 For example, the Young’s
modulus and tensile strength of arabinoxylan films were 1.3
GPa and 30.8 MPa, respectively, whereas the corresponding
values for films reinforced with 11 wt % MMT were 2.0 GPa
and 31.6 MPa.
Given the results presented here for the reinforcing effects of

sepiolite fibers, it is interesting to make comparison with the
effects introduced by other fibrous nanofillers. A significant

increase in the tensile strength of hemicellulose films was
previously seen when using cellulose nanofibers. Since the size
of nanofibrillated cellulose is in a similar range to that of
sepiolite fibers and both fillers have a high aspect ratio, similar
behavior may be expected. Hemicellulose-cellulose nano-
composite mechanical properties are summarized in Table 2.

Peng et al.42 recently reported ∼300% increase in tensile
strength and Young’s modulus with 15 wt % nanocellulose
addition to bamboo arabinoxylan. In this case, nanocellulose
was obtained by multihomogenization of bleached sisal pulp
and had a reported aspect ratio of 50−100, based on a
nanofibril diameter of 20 ± 10 nm and length >1000 nm. Such
significant increases in strength and stiffness were, however, not
observed when rye arabinoxylan was reinforced using bacterial
nanocellulose with similar dimensions as the sepiolite applied in
this study.34 For example, the Young’s modulus of arabinoxylan
films showed ∼30% increase in the nanocomposite with 15%
bacterial nanocellulose addition.
As concluded from the FT-IR results, interaction through

hydrogen bonding between the sepiolite fibers and the RAX
chains can be inferred and these interactions contribute to a
great increase in the stiffness of the material. It is also apparent
from the results that, above a clay content of 5 wt %, fiber
aggregation is more probable, which will contribute to the
breakage of the films under tensile load and mean that further
increases in tensile strength and Young’s modulus are not likely
to be detected. We may assume that the sepiolite fibers are
themselves able to form a network, hence providing a
reinforced composite material with superior mechanical
properties compared to the neat RAX matrix. Considering
the high aspect ratio of sepiolite fibers, a percolation threshold
can be calculated. Since the dimensions of sepiolite fibers show
a great variation in different reports,17,23,44 a range of calculated
values can be obtained for the percolation threshold between
0.6% and 3.5% (v/v) if a cylindrical sepiolite shape is assumed
(Pc = 0.7/r, where Pc is the percolation threshold for cylindrical
shaped particles and r is the aspect ratio calculated from the
ratio of length and diameter of sepiolite fibers).45 This
calculation suggests that an added amount of sepiolite above
the critical percolation threshold of approximately 2% (v/v)
would result in highly increased strength and stiffness in the
materials. As supported by the tensile data presented here, films
containing sepiolite at loadings much above the estimated Pc do

Table 1. Young’s Modulus, Strain at Break, and Tensile
Strength of Rye Arabinoxylan (RAX) and RAX-Sepiolite
Composite Filmsa

sample

Young’s
modulus
(GPa)

strain at break
(%)

tensile strength
(MPa)

RAX-sepiolite 90:10 4.3± 0.1 A 5.0 ± 0.8 C 73.7± 5.3 A
RAX-sepiolite 95:5 4.2± 0.2 A 8.1 ± 2.3 C 66.7± 2.3 B
RAX-sepiolite 97.5:2.5 3.9± 0.3 B 10.4 ± 3.1 C 73.6± 3.2 A
RAX 2.3± 0.2 C 11.9 ± 4.3 C 42.5± 6.5 C
RAX-sepiolite 90:10 +
30% mPEG

1.4± 0.1 D 26.7 ± 11.B 24.9± 5.1 F

RAX-sepiolite 95:5 +
30% mPEG

1.0± 0.2 E 33.3 ± 6.5 B 26.6± 2.3 EF

RAX-sepiolite 97.5:2.5 +
30% mPEG

0.8± 0.1 EF 44.4 ± 7.8 A 30.2± 6.6 DE

RAX + 30% mPEG 0.7± 0.1 F 42.0 ± 9.7 A 32.8± 7.3 D
aA, B, C, D, E, F: values with different superscript letters in the same
column are statistically different (significance level of 0.05).

Table 2. Mechanical Properties of Xylan-Cellulose
Nanocomposite Films

samplea
filler loading
(wt %) ref

Young’s
modulus
(GPa)

strain at
break (%)

tensile
strength
(MPa)

RAX 0 34 2.5± 0.4 8.1± 3.3 58± 11
RAX +
BC

15 3.2± 0.5 3.3± 0.6 53± 7

AXb 0 42 0.7± 0.1 3.4± 0.2 11.9± 0.9
AX +
NFCb

20 3.4± 0.1 1.4± 0.1 39.5± 2.2

Xc 0 43 ∼22 ∼2.2
X + SWc 10 ∼23 ∼5.9
aRAX = rye arabinoxylan, BC = bacterial cellulose, AX = arabinoxylan,
NFC = nanofibrillated cellulose, X = xylan from oat spelts, SW =
sulfonated cellulose whisker. bAdded sorbitol plasticizer, 25%
(percentage based on xylan content). cAdded sorbitol plasticizer, 50%.
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not show significant further increases in tensile strength and
stiffness.
Barrier Properties. Water vapor barrier properties of cast

RAX-sepiolite films were studied by measuring the water vapor
permeability of the films using an ASTM method. The
measured values were 2.6 ± 0.3, 2.5 ± 0.0, 3.3 ± 0.4, and 3.1
± 0.3 (g mm/(kPa m2 day)) for the RAX, RAX + sepiolite
97.5:2.5, 95:5, and 90:10 films, respectively. These data show
that sepiolite addition up to 10 wt % had no significant
influence on water vapor permeability. Even though sepiolite
might theoretically create a slightly longer and more difficult
path for water molecules to diffuse through the films, sepiolite
fibers are hydrophilic and embedded into a hydrophilic matrix
with poor water vapor barrier properties. Hence, a positive
effect in terms of reduced water vapor permeability is not seen.
Further, the barrier effect commonly noted when plate-like
clays are well dispersed in biopolymer films is not observed
here, which is consistent with the different fibrous morphology
of sepiolite and a lower probability that water vapor
permeability will be reduced through a tortuous path effect.46

WVP values measured for the unfilled RAX reference film were
lower or in the same range as values reported previously for
nonplasticized arabinoxylan films extracted from corn hulls and
bran.7,47

The effect of sepiolite addition on RAX film oxygen
permeability was studied and the results are summarized in
Table 3. RAX films showed low permeability values, between 0

and 1 cm3 μm/(m2 day kPa). Low OP values were expected
since hemicellulose films have proven to be excellent oxygen
barriers, with values in the range of 0.16−3.2 cm3 μm/(m2 day
kPa) reported for similar hemicellulose film types.1,2,39 In this
case, as with water vapor, sepiolite addition had no significant
effect on oxygen permeability and, as above, the lack of a
tortuous path effect when using a fibrous clay as additive may
provide an explanation for these findings.

■ CONCLUSIONS
Transparent or semitransparent rye arabinoxylan (RAX) films
containing 2.5−10 wt % sepiolite were cast from aqueous
suspensions and characterized by various physical methods. FT-
IR spectroscopy provided some evidence for hydrogen bonding
between sepiolite and the RAX matrix. Strong interfacial
bonding between sepiolite and the RAX matrix was illustrated
by scanning electron microscopy and the good distribution of
the clay was also shown using EDX imaging. Mechanical testing
revealed very significant increases in the Young’s modulus and
tensile strength as a result of sepiolite addition, which exceeded

previously reported values for xylan/nanocellulose or xylan/
MMT films. However, unlike layered nanoclays, addition of
sepiolite fibers did not reduce the water vapor or oxygen
permeability of RAX films and therefore other steps would
need to be introduced in order to obtain higher gas barrier
properties for specific applications.
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(6) Sternemalm, E.; Höije, A.; Gatenholm, P. Carbohydr. Res. 2008,
343, 753−757.
(7) Zhang, P.; Whistler, R. L. J. Appl. Polym. Sci. 2004, 93, 2896−
2902.
(8) Ibn Yaich, A.; Edlund, U.; Albertsson, A. Biomacromolecules 2012,
13, 466−473.
(9) Mikkonen, K. S.; Heikkila,̈ M. I.; Willför, S. M.; Tenkanen, M. Int.
J. Polym. Sci. 2012, 2012, 1−8.
(10) Saxena, A.; Elder, T. J.; Ragauskas, A. J. Carbohydr. Polym. 2011,
84, 1371−1377.
(11) Tartaglione, G.; Tabuani, D.; Camino, G.; Moisio, M. Compos.
Sci. Technol. 2008, 68, 451−460.
(12) Chivrac, F.; Pollet, E.; Schmutz, M.; Aveŕous, L. Carbohydr.
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